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A characterization of topological order in terms of bi-partite entanglement was proposed recently �A. Kitaev
and J. Preskill, Phys. Rev. Lett. 96, 110404 �2006�; M. Levin and X.-G. Wen, ibid. 96, 110405 �2006��. It was
argued that in a topological phase there is a universal additive constant in the entanglement entropy, called the
topological entanglement entropy, which reflects the underlying gauge theory for the topological order. In the
present paper, we evaluate numerically the topological entanglement entropy in the ground states of a quantum
dimer model on the triangular lattice, which is known to have a dimer liquid phase with Z2 topological order.
We examine the two original constructions to measure the topological entropy by combining entropies on
plural areas, and we observe that in the large-area limit they both approach the value expected for Z2 topo-
logical order. We also consider the entanglement entropy on a topologically nontrivial “zigzag” area and
propose to use it as another way to measure the topological entropy.
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I. INTRODUCTION

Exotic phenomena in quantum many-body systems are
accompanied by nontrivial patterns of entanglement in
ground-state wave functions. One useful measure of en-
tanglement for a many-body state ��� is the entanglement
entropy S� between a part � of the system and the rest of the

system �̄. It is defined as the von Neumann entropy of the
reduced density matrix �� obtained by tracing out the de-

grees of freedom of �̄:

S� = − Tr�� ln ��, �� = Tr
�̄

������ . �1�

It has been clarified in the past few years that some important
properties of a quantum ground state are encoded in the size
dependence of S�. For a system with short-range correlations

only, � and �̄ correlate only in the vicinity of the boundary
separating them and thus the entanglement entropy scales
with the size of the boundary �boundary law�.1 However, at a
critical point with algebraically decaying correlations, the
scaling of entanglement entropy exhibits a universal logarith-
mic correction characterizing the criticality. Specifically, in a
one-dimensional quantum critical system described by a con-
formal field theory �CFT�, the entanglement entropy shows a
logarithmic scaling law with a coefficient determined by the
central charge of the CFT.2 In some two-dimensional quan-
tum critical states, the entanglement entropy also contains a
universal contribution, related to the geometry of the
subsystem.3

Another type of nontrivial entanglement can exist in a
system with topological order.4,5 Such a system exhibits de-
generate ground states separated from excited states by an
energy gap, and this degeneracy, which depends on the to-
pology of the entire system, cannot be ascribed to any type
of conventional spontaneous symmetry breaking. Indeed, it
has been demonstrated in some models that these degenerate
ground states cannot be distinguished by any local
observable.6–8 Preskill9 suggested that this degeneracy can

be regarded as a global encoding of information reminiscent
of quantum error-correcting codes and is a consequence of
some long-distance entanglement. A characterization of this
global entanglement was realized recently by Kitaev and
Preskill �KP� �Ref. 10� and by Levin and Wen �LW�.11 It was
argued that if � is a disk �in a two-dimensional system� with
a smooth boundary of length L, the entanglement entropy
scales as

S� = �L − � + ¯ , �2�

where the ellipsis represents terms which are negligible in
the limit L→�. If the area � is not a disk and has m dis-
connected boundaries, the topological term −� in Eq. �2� is
multiplied by m. While the coefficient � depends on the mi-
croscopic details of the system, � is a universal constant
characterizing topological order and was dubbed the topo-
logical entanglement entropy. Indeed, � measures the so-
called total quantum dimension D of topological order by
�=ln D. In the case of topological order described by a dis-
crete Abelian gauge theory �e.g., Zn�, D is equal to the num-
ber of elements in the gauge group. In general, it is difficult
to separate the topological term −� from the boundary term
in Eq. �2� because, on a lattice, the discrete nature of the
boundary makes it difficult to define unambiguously the
length L. To solve this, KP and LW found some ways to
define � by forming a linear combination of the entangle-
ment entropies on plural areas sharing some boundaries, and
cancelling the boundary terms out to leave the topological
term. KP and LW illustrated this idea using effective field
theories and exactly solvable models.

In this paper, we analyze the entanglement entropy in the
quantum dimer model �QDM� on the triangular lattice12 and
examine the effectiveness of the proposal in numerical cal-
culations of finite-size systems. This model is known to ex-
hibit a dimer liquid phase with Z2 topological order in a finite
interval in the parameter space.12 We mainly consider the
Rokhsar-Kivelson �RK� point,13 where the ground-states are
exactly known and where the calculation of reduced density
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matrices �and thus entanglement entropy� amounts to count-
ing the number of dimer coverings of the lattice satisfying
some particular constraints. We calculate the topological en-
tanglement entropy numerically, and compare the result with
�=ln 2 expected for Z2 topological order.

We comment on related systems here. Kitaev’s model14 is
known to be the simplest solvable model with Z2 topological
order, and the entanglement entropy of this model has been
analyzed rigorously in Refs. 11 and 15 and the value �
=ln 2 for the topological entropy was confirmed. The solv-
able QDM �kagome lattice� of Ref. 16 can be mapped onto
Kitaev’s model on the honeycomb lattice, and thus its en-
tanglement entropy can be analyzed in the same way. These
models give elegant results, but are too ideal for discussing
generic features of topological order because they have a
strictly zero spin-spin �or dimer-dimer in the QDM� correla-
tion length and are completely free of finite-size effects. In
this sense, our analysis on the QDM on the triangular lattice
is a step toward more realistic systems—though we mainly
consider the exact RK ground states, they have a finite
dimer-dimer correlation length and finite-size effects arise. In
the same spirit but for another kind of topological order, the
entanglement entropy of Laughlin wave functions was ana-
lyzed numerically in Ref. 17.

The paper is organized as follows. In Sec. II, we give the
basic definitions and settings in our analysis. In Sec. III, we
numerically analyze the properties of entanglement entropy
in the QDM on the triangular lattice. Especially, we examine
the two constructions of topological entanglement entropy
proposed by KP and LW. Furthermore, we consider the en-
tanglement entropy on a particular topologically nontrivial
area and design another procedure to extract �, which, for
QDMs, turns out to give an accurate value even in relatively
small systems. We then conclude in Sec. IV.

II. DEFINITIONS AND SETTINGS

A. Model

We consider the QDM on the triangular lattice defined by
the Hamiltonian12,13

�3�

where the sum runs over all rhombi consisting of two neigh-
boring triangles and we set t�0. At the Rokhsar-Kivelson
�RK� point v= t, a ground-state is given exactly by the equal-
amplitude superposition of all the dimer coverings13

�RK� �
1

	�E�



C�E
�C� , �4�

where E denotes the set of all the dimer coverings. This wave
function exhibits exponentially decaying dimer-dimer
correlations12,18,19 and is an example of liquid with no broken
symmetries.

This wave function is not the unique ground state if the
lattice has a nontrivial topology �cylinder, torus, etc.�. Let us

focus on the case of the torus hereafter. We draw two incon-
tractible loops 	1 and 	2 which pass through the bonds and
wind around the torus in x and y directions, respectively, as
in Fig. 1. We classify E into four sets Ep with p= + + , +−,
−+ ,−−, depending on the parity of the number of dimers
crossing 	1 and 	2. The resultant sets Ep, called topological
sectors, are not mixed by any local dimer move �and thus by
any term in the Hamiltonian�. The spectrum of the Hamil-
tonian can therefore be determined separately in each sector.
At the RK point, the ground state in each sector is given by

�RK;p� �
1

	�Ep�



C�Ep

�C� . �5�

All these states have zero energy for the Hamiltonian �3� and
span a four-dimensional ground-state manifold. It has been
shown analytically and numerically that the degeneracy of
the ground states and the exponential decay of the dimer-
dimer correlation at the RK point persist in a finite range in
the parameter space, forming a liquid phase with gapped
excitations in 0.82�3�
v / t�1.12,18,20,21 Decreasing v / t fur-
ther, the model enters a valence bond crystal �VBC� phase
with a large unit cell �12 sites�, called 	12�	12 VBC.12,21

The ground-state degeneracy in the liquid phase indicates
that this phase is topologically ordered. It is indeed a real-
ization of the deconfined phase of a Z2 �Ising� gauge
theory,22 where the requirement that physical states must be
invariant under gauge transformations is played by the dimer
hard-core constraint and where the role of the gauge flux
piercing a plaquette is played by a dimer-move operator
around this plaquette.16,23 The four ground-states correspond
to the four possible choices to put �or not to put� a vortex
through the two holes of the torus.

B. Lattice

The lattice is put on a torus and is defined by two vectors
T1 and T2 specifying the periodicity. We mostly use lattices
which are symmetric under 120° rotation, by setting

T1 = lu + mv, T2 = − mu + �l + m�v , �6�

where l and m are integers and u and v are unit vectors as
shown in Fig. 1. The total number of sites is given by N
= l2+ lm+m2. The lattices we consider have N
=16,28,36,48,52,64, which correspond, respectively, to
�l ,m�= �4,0� , �4,2� , �6,0� , �4,4� , �6,2� , �8,0�. In Sec. III C,
N=100 �corresponding to �10,0�� is also studied.

u

v

T1

T2

N�16

�1

�2 N�28

FIG. 1. Triangular lattices with periodic boundary
conditions.
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C. Reduced density matrix

To define a reduced density matrix �RDM� for the QDM,
we must specify the local degrees of freedom of the model.
To this end, we assign an Ising variable 
k to each bond k of
the lattice as in Ref. 23 and identify the presence/absence of
a dimer on the bond as 
k= +1 and −1, respectively. Any
physical configuration �
k� must satisfy the hard-core con-
straints: for each site of the lattice, there must be exactly one
bond with 
k=1 emanating from it. An area � is defined as
a set of bonds. We define the matrix element of the RDM of
a ground state ��� as

�c1����c2� = 

c̄

�c1, c̄������c2, c̄� , �7�

where c1 and c2 are dimer configurations on � and the sum

is over all the dimer configurations c̄ on �̄. Note that we set
�c , c̄ ���=0 if �c , c̄� is an unphysical configuration �violating
the hard-core constraint�.

Since the liquid phase under consideration exhibits degen-
erate ground states, we must specify for which state in the
ground-state manifold we calculate the entanglement en-
tropy. However, as long as the area is local, it was numeri-
cally demonstrated that the RDMs are identical for all states
in the ground-state manifold, up to a correction which decays
exponentially with the system size.7 Thus in this case we can
take any state in the ground-state manifold. At the RK point,
which we mainly consider in the following, we simply take
the “equal-amplitude” state �4�. The RDM of the equal-
amplitude state can be calculated in a way described in the
Appendix, either by direct enumeration, or using Pfaffians.

III. NUMERICAL RESULTS

Here we present our numerical results. The idea of KP
and LW should apply to the dimer liquid phase in 0.82�3�

v / t�1. The topological entropy for this phase is expected
to be �=ln 2
0.6931, reflecting Z2 topological order. We
mainly consider the RK point v / t=1 with exact ground
states �4� or �5�, and calculate the entanglement entropies
using the methods in the Appendix. For v / t�1, we perform
Lanczos diagonalization of the Hamiltonian �3� for small
systems �up to N=36�, and calculate the entanglement entro-
pies in the ground state.

A. Circular areas

We first consider the entanglement entropy on disks �areas
with no holes� and discuss how the entanglement entropy
scales with the extension of the area. Calculations were done
for the RK wave function �4�. As the choice of the area �,
we define circular areas in the following way: we draw a
circle with a radius R centered at a site or at an interior of a
triangle and regard every bond whose midpoint is in the
circle as an element of the area; see Fig. 2. This definition
causes an unavoidable ambiguity in the radius R—different
radii can result in the same area. For example, the possible
radius for the smallest site-centered area �consisting of six
bonds� ranges in Rmin=0.5�R�

	3
2 =Rmax. Here we analyze

the data taking this ambiguity into account.

In Fig. 3, the values of S� on circular areas are plotted
versus the radius R. The different symbols correspond to
different system sizes �from N=16 to 52� and a horizontal
bar specifies the interval �Rmin,Rmax� �N=52 data points only,
for clarity� The data from different system sizes almost co-
incide, showing the smallness of the finite-size effects. We fit

�a�

�b�

FIG. 2. Circular areas centered at �a� a site or �b� an interior of
a triangle. As examples, areas with R=2.5 and R=2.47 are shaded
for �a� and �b�, respectively.
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S=4.41(11)R-1.79(25)
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FIG. 3. �Color online� Entanglement entropy on circular areas
with radii R at the RK point. The ambiguity in R is indicated by
horizontal bars �only for N=52�. The data for N=52 are fitted by
lines using minimum or maximum radii. The resultant linear func-
tions shown in the figure contains some numbers enclosed in paren-
theses, which indicates the standard errors in the last displayed
digits.
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the data for N=52 by a linear relation using Rmin or Rmax. We
observe a rough agreement with the linear fitting in both
cases as expected from the scaling form �2�. The lines inter-
sect the vertical axis around −0.1 and −1.8 when using Rmin
and Rmax, respectively. These values sandwich the expected
value −ln 2
−0.6931 but are both away from it. We also
fitted the data separately for site-centered and triangle-
centered cases �not shown in the figure�, but no essential
difference was observed. These results show that a direct
check of the scaling �2� is difficult.

In general, on a lattice, the boundary of � is made of
segments. If the sum of the segments is long enough, they
contribute to the entanglement entropy by an amount propor-
tional to the length. But in addition, we have to take into
account the contribution coming from local correlations �be-

tween the regions � and �̄� taking place in the vicinity of
the angles between successive segments. If � is large, the
contribution from these angles may be small �of order O�L0�,
compared to the boundary length L�, but this contribution
will still be of the same order as the topological term we are
looking for.

In the present case �circular areas�, this ambiguity in de-
fining a boundary length on the lattice appears as an ambi-
guity in the definition of R. To compute � in a well-defined
way, we need to turn to the constructions using plural areas,
which we discuss in the next subsection.

B. Construction of the topological entropy using plural areas

KP and LW proposed two ways to extract the topological
constant � independently of the definition of the boundary
length.10,11 The idea is to evaluate � by forming an appropri-

ate linear combination of the entanglement entropies of dif-
ferent areas, so that the boundary contributions cancel out.

1. Kitaev-Preskill construction

In the KP construction,10 we consider a circle and divide
it into three “fans” A, B, and C. Then we form a linear
combination

Stopo
KP = SA + SB + SC − SAB − SBC − SCA + SABC, �8�

where SXY¯ denotes the entanglement entropy on a compos-
ite area X�Y �¯. In this combination, all the boundary
contributions cancel out and a topological term −� should
remain. For example, let us consider the line separating A
and B. The boundary contributions along this line appears in
SA and SB with a plus sign and in −SBC and −SCA with a
minus sign. Some attention should be paid to the triple point,
in the vicinity of which the areas have different shapes and
thus possibly different local contributions. Three areas form
a 120° angle: A, B, and C; three areas form a 240° angle: BC,
AC, and AB. However, recalling that the entanglement entro-
pies of an area and its complement are the same, the entropy
of BC is equal to that of the complement of BC, which has
the same shape with A in the vicinity of the triple point. Thus
the local contributions from A and BC in the vicinity of the
triple point should match. The same argument applies to ev-
ery line and every corner, giving a cancellation of all the
boundary contributions in Eq. �8�. Assuming the scaling �2�,
we expect Stopo

KP =−� �for a large enough radius�.
We apply this idea to the present model. We divide a

circle by three lines emanating from the center as in Fig. 4.
These lines are placed at angles �0−0, �0+120°−0, and �0
+240°−0 measured from the �reference� u direction. Here

A
B

C

�a�S00

A

B C

�b�S30

A

B C

�c�T30

A

B

C

�d�T90

FIG. 4. Divisions of circular
areas for the Kitaev-Preskill con-
struction. �a� and �b�: site-
centered, R=2.78. �c� and �d�:
triangle-centered, R=2.84.
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“−0” represents an infinitesimal shift for avoiding collisions
between the points �midpoints of bonds� and the boundaries.
For example, points at an angle �0 belong to A, not to C. We
take �0=0° or 30° for site-centered circles �referred to as
“S00” and “S30”� and �0=30° or 90° for triangle-centered
circles �“T30” and “T90”�. In these settings, the parts A, B, C
are equivalent under 120° rotation, and we thus only need to
calculate Stopo

KP =3SA−3SAB+SABC.
We first consider the case of the RK wave function �4�. In

Fig. 5, the data of Stopo
KP are plotted versus the radii R of the

circles. As in the case of circular areas presented in Fig. 3,
finite-size effects are very small—except for the case where
the circle ABC occupies a substantial part of the system, the
data from different N’s almost coincide. In the largest system
N=64, we can regard the data up to R
3.1 as good approxi-
mation to the values in the infinite system. In all the cases,
Stopo

KP decreases almost monotonically with R and for large
radii �specifically, 2.2
R
3.1� shows values which are
very close to −ln 2 �see Table I�, the expected value for a Z2
topologically ordered state.

Next we consider the region v / t�1 of the Hamiltonian
�3�. In Z2 liquid phase 0.82�3�
v / t�1, Stopo

KP is expected to

show −ln 2 in the large-R limit. On the other hand, in 	12
�	12 VBC phase v / t
0.82�3�, where discrete symmetries
are spontaneously broken, the finite-size ground-state can be
approximated by a linear superposition of 12-fold symmetry-
broken states. In such a state, we conjecture that the en-
tanglement entropy on a disk � scales as S�
�L+ln d in
the large-area limit, where d is the ground-state degeneracy
and is equal to 12 in the present case. The constant term ln d
is not topological in the sense that the same value would
appear even if � had another geometry, unlike −� in Eq. �2�.
Note also that this constant is positive, in contrast to the
negative topological term −�. Assuming this, the combina-
tion �8� should give ln d in a symmetry-broken phase. Thus,
Stopo

KP is expected to jump from a negative �topological� value
−ln 2 to a positive �nontopological� value ln 12 along with
the transition from the liquid phase to the VBC phase. We
performed Lanczos diagonalization of the Hamiltonian �3�
for a lattice with N=36 �which is the maximum size in our
exact diagonalization calculation and is compatible with
	12�	12 VBC ordering�, and calculated Stopo

KP in the ground-
state, which lies in the sector p=−− in both the VBC and
liquid phases on this lattice. The results are shown for two
types of areas �“S00” and “T30”� in Fig. 6. Because the
system and area sizes are rather small, we do not observe a
jump at the transition. However, we can already observe
some tendency: for fixed v / t, Stopo

KP tends to decrease as a
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FIG. 5. �Color online� Topological entanglement entropy from
the Kitaev-Preskill construction �8� at the RK point. Examples of
areas are shown in Fig. 4. Some explicit values for large radii are
shown in Table I.

TABLE I. Some values of −Stopo
KP at the RK point, divided by the

expected value ln 2. The data for large radii are shown, and excel-
lent agreement with the expectation can be seen.

S00 case T30 case

Radius R

−Stopo
KP / ln 2

Radius R

−Stopo
KP / ln 2

N=52 N=64 N=52 N=64

2.18 0.9143 0.9143 2.57 0.9291 0.9283

2.29 0.9839 0.9835 2.75 0.9618 0.9513

2.50 0.9822 0.9822 2.84 0.9965 0.9518

2.60 0.9765 0.9760 2.93 1.0910 0.9635

2.78 1.0014 0.9897 3.01 1.0910 0.9635

3.04 1.3252 0.9967 3.18 0.9649

3.12 0.9967 3.25 0.9898
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FIG. 6. �Color online� Kitaev-Preskill topological entropy �8� as
a function of v / t for N=36. In the large-R limit, Stopo

KP is expected to
jump from ln 2 in Z2 liquid phase 0.82�3�
v / t�1, to some posi-
tive value in the VBC phase v / t
0.82�3�.
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function of R in the liquid side while it tends to increase in
the VBC side. Some positive values of Stopo

KP in the VBC
phase are also seen in “T30” case.

2. Levin-Wen construction

In the LW construction,11 we consider an annulus divided
into four pieces as in Fig. 7, and form a combination

Stopo
LW = SABCD − SABC − SCDA + SAC. �9�

This combination is guaranteed to be non-positive from the
strong subadditivity inequality of entanglement entropies,24

namely,

Stopo
LW = SX�Y − SX − SY + SX�Y � 0, �10�

where X=A�B�C and Y =C�D�A. The combination �9�
is expected to give −2� for a topological phase and zero for
a conventional phase �disordered, or with some symmetry-
breaking order�.

In Fig. 7, an annulus is divided by four lines at angles
�0−0, �0+60° +0, �0+180°−0, �0+240° +0. We consider
only site-centered annuli, and we set �0=0° or 30° �again
referred to as “S00” and “S30”�. The result for the RK wave
function is shown in Fig. 8. Rin and Rout denote the inner and
outer radii of the annulus respectively, and Stopo

LW ’s are plotted
as a function of Rout. Up to Rout
3.1, where the data for N
=64 well approximate the values in the infinite system, we
observe that Stopo

LW monotonically decreases with Rout and ap-
proaches −2 ln 2. Unfortunately, the convergence to −2 ln 2
is not very clear up to this radius. In the LW construction, the

requirement for the convergence is ��Rin, Rout−Rin, L
−2Rout, where � is the correlation length �
1 at RK point�
and L=	N is the linear system size �or equivalently, the
maximum possible 2Rout�. Thus, the LW construction suffers
from stronger finite-area �not finite-N� effects than the KP
construction which just requires ��R, L−2R.

C. Zigzag area

We design a different way to evaluate � using a thin “zig-
zag” area � winding around the torus as in Fig. 9. This area
is invariant by translation in the x direction and all points
�black circles in Fig. 9� are equivalent by symmetry. In con-
trast to the more complicated areas considered before, we
expect the boundary �i.e., nontopological� contribution to S�

A
B

C
D

�a�S00

A
B

C
D

�b�S30

FIG. 7. Division of annular areas for the Levin-Wen
construction.
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FIG. 8. �Color online� Topological entanglement entropy from
the Levin-Wen construction.
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to be precisely proportional to lx, when lx is sufficiently
larger than the correlation length �. In this new geometry, the
thermodynamic behavior is obtained as soon as �� lx, ly,
whereas the KP construction requires ��R, L−2R, which is
difficult to reach in exact diagonalization up to N=36. Since
the area is topologically nontrivial �it contains the incontract-
ible cut 	1�, the value of S� depends on the choice of the
ground state, even for large systems. We calculate the en-
tanglement entropies on this area in the ground-states �RK�
and �RK; p� on isotropic lattices lx= ly, and write them as
S�RK� and S�RK; p� respectively. The results are plotted in
Fig. 10. As anticipated, S� appears to be almost perfectly
linear in lx �compared with the results of Fig. 3�. Moreover,
we observe that the topological constant � can be extracted
in two different ways: �a� by extrapolating �through a linear
fit� S�RK; p� at “lx=0” or �b� by −�
S�RK; p�−S�RK�.
These two follow from the scaling forms

S = �1lx for �RK� ,

S = �1lx − � for �RK;p� , �11�

where �1 is a nonuniversal constant. A similar scaling was
obtained rigorously by Hamma et al.15 for a “ladder” area in
Kitaev’s model on the square lattice. Here we confirmed that
it holds accurately even in a system with a finite correlation
length. The scaling forms �11� provide an accurate way to
calculate the topological constant � even in relatively small
systems. The condition �satisfied by QDM� is that topologi-
cal sectors must be well defined and not mixed by the Hamil-
tonian, so that one can label the ground-states by their sec-
tors. Computing � from the largest system �lx= ly =10� gives
our best estimate of the topological entanglement entropy
S�RK�−S�RK; p=−−�=0.6939 �to be compared with ln 2
=0.6931�; see Table II.

As another application, we use the scaling forms �11� to
evaluate the topological term −� in the region v / t�1. We
performed Lanczos diagonalization for lattices with lx= ly
=4 and lx= ly =6. For v / t�1, the ground-state lies in the
sector p= ++ for lx=4 and p=−− for lx=6. We therefore
compute the entropies S�p= + + ; lx=4� and S�p=−−; lx=6�
on the zigzag areas and approximate the topological term −�
by a linear extrapolation to “lx=0.” In the thermodynamic
limit, the constant term extracted in this way is expected to
jump from −ln 2 to a positive value, as in the case of Fig. 6.
However, the 	12�	12 VBC ordering is compatible only
with lattices where lx= ly is a multiple of 6, and a linear
relation S�
�1lx+ln d holds only for such lattices.27 The
lattice with lx= ly =4 is thus out of this scaling, and the
present estimation of the constant term is invalid for the
VBC phase. Still, it can be used in the liquid phase. The
result is shown in Fig. 11. A value close to ln 2 is recovered
at the RK point but it decreases smoothly when decreasing
v / t. No clear signature of a transition out of the topological
liquid can be seen. Larger system sizes are probably required
to locate the transition with this method. The problem prob-
ably lies in a rapid increase of the dimer-dimer correlation
length �and thus stronger finite-size effects� when moving
away from the RK point in the direction of the VBC phase.

IV. SUMMARY AND CONCLUSIONS

The concept of topological entanglement entropy was re-
cently introduced by KP and LW as a way to detect and
characterize topological order from a ground-state wave
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FIG. 10. �Color online� Entanglement entropies on a zigzag area
at the RK point. The upper line is a linear fit to S�RK�. The lower
one is a fit to S�RK; p= + + � when lx= ly is a multiple of 4 and
S�RK; p=−−� otherwise. The topological constant estimated from
the latter fit is �=0.73±0.01. This particular choice of p as a func-
tion of lx is motivated by the fact that, when v / t�1, it corresponds
to the ground-state sector. Explicit values of S�RK�−S�RK; p� are
shown in Table II.

TABLE II. Values of S�RK�−S�RK; p� on a zigzag area, divided
by ln 2. The sector p used in Fig. 10 is indicated by an asterisk, and
gives the best estimate in most cases.

lx�=ly�

�S�RK�−S�RK; p�� / ln 2

�� �� �� ��

4 1.0024* 0.8051 1.4910 0.8051

6 1.0315 0.9248 1.0315 1.0212*

8 0.9944* 1.0022 1.0017 1.0022

10 0.9981 1.0028 0.9981 1.0011*
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function. We have illustrated numerically how this approach
works in the case of the Z2 liquid phase of the QDM on the
triangular lattice. We found that, due to lattice discretization,
the topological entropy � cannot be obtained from a direct fit
to the scaling form S
�L−�. Instead, it is necessary to
combine the entropies on plural areas to cancel out the
boundary contributions, as suggested by KP and LW. In par-
ticular, for the KP construction, we clearly observed that in
the large-area limit the topological entanglement entropy
converges to −ln 2 expected for Z2 topological order. We also
proposed a procedure to evaluate the topological entropy us-
ing a topologically nontrivial “zigzag” area, which gives an
accurate value even in small systems. For a system of linear
size lx=10, the later method provided an estimate of the to-
pological entanglement entropy 0.6939 at the RK point, in
remarkable agreement with the expected value �ln 2
=0.6931�.

In addition to illustrating the concept of topological en-
tanglement entropy in a “realistic” model, the present analy-
sis offers an evidence of Z2 topological order in the QDM on
the triangular lattice from a new perspective. Although the
existence of topological degeneracy,12 the analogy between
this model and a Z2 gauge theory23 and the absence of any
broken symmetry7 were already known, the present work
confirms the Z2 structure in the ground-state wave function
itself.
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APPENDIX: REDUCED DENSITY MATRIX OF THE RK
WAVE FUNCTION

In this appendix, we derive a simple expression for the
RDM of the RK wave function �4�, and describe two meth-
ods for calculating it. A dimer configuration C on the entire

system can be divided into the configurations on � and �̄:

C � E → c � E�, c̄ � E�̄, �A1�

where E� �E�̄� denote the set of all the possible dimer con-

figurations on � ��̄�. Now we consider the inverse mapping:
given c�E� and c̄�E�̄, under what condition is �c , c̄� a
physical configuration? This condition is given in terms of
“occupied sites” of dimer configurations as follows. For a

configuration c�E�, we define ��c� as the set of all the sites
occupied by dimers in c, as shown in Fig. 12. We similarly
define ��c̄� for c̄�E�̄. In order for �c , c̄� to be physical, �a�
��c� and ��c̄� should not overlap with each other and �b� the
sum of ��c� and ��c̄� should cover all the sites of the lattice.
Then we can rewrite the wave function �4� as

�RK� =
1

	�E�



c�E�,c̄�E�̄

��c����c̄�=Xs,

�c��c̄� , �A2�

where Xs is the set of all the sites. If we list up all the
possible ��c� and write them as �i �i=1,2 , . . . �, we can
divide the summation as

�RK� =
1

	�E�



i



c�E�

��c�=�i,

�c� 

c̄�E�̄

��c̄�=Xs\�i.

�c̄� . �A3�

We introduce

E�
i � �c � E����c� = �i� ,

E
�̄

i � �c̄ � E�̄���c̄� = Xs \ �i� , �A4�

and we define normalized states on � and �̄ as

���
i � �

1

	�E�
i �



c�E�

i

�c�, ��
�̄

i � �
1

	�E
�̄

i �



c̄�E
�̄

i

�c� . �A5�

Then we arrive at the Schmidt decomposition

�RK� = 

i

	�i���
i ���

�̄

i �, with �i �
�E�

i � · �E
�̄

i �

�E�
. �A6�

The RDM of this state reads

�� = Tr
�̄

�RK��RK� = 

i

��
�̄

i �RK��RK��
�̄

i � = 

i

���
i ��i���

i � .

�A7�

This expression is already diagonal and the �i’s are the ei-
genvalues of ��. The entanglement entropy is then given by
S�=−
i�i ln �i. Since �i’s are expressed using the number of
dimer coverings for a given set of occupied sites, the task has
been reduced to counting dimer coverings. This can be done

� �
�

FIG. 12. Left �right�: dimer configuration c �c̄� on � ��̄� and
their “occupied sites” ��c� ���c̄��, marked with circles �squares�. In
this picture, ��c� and ��c̄� are compatible and thus �c , c̄� is
physical.
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by direct enumeration using a recursive algorithm or by a
Pfaffian method.

The Pfaffian method uses the fact that the number of
dimer coverings is given by the the Pfaffian of an adjacency
matrix with appropriate signs �entries are ±1 if the two sites
are connected, and 0 otherwise�.25 Counting only configura-
tions �c ,c�� such that ��c�=�i and ��c̄�=X \�i can be done
by removing some bonds of the lattice �setting to zero the
corresponding matrix element�: if a site x belongs to �i, there
cannot be any dimer between x and a site y if �xy� is not a
bond of �. In the same way, any bond �xy��� involving a
site x��i must be switched off. The product �E�

i � · �E
�̄

i � is
thus obtained from the Pfaffian of the modified adjacency
matrix above.28 It is clear that sites in the “bulk” of � are
necessarily included in all �i �otherwise the number of con-

figurations is zero� and those in the bulk of �̄ are necessarily
excluded. There is a choice only for the sites in the vicinity

of the boundary between � and �̄ �sites which are both
connected to bonds �� and bonds ���. The number of
possible �i therefore scales as 2P��� where P��� is the “pe-
rimeter” of �. Since the calculation of each Pfaffian requires
of the order of �N3 operations �see Ref. 26 for an explicit
algorithm� the computer time required to obtain the RDM
�and its spectrum� scales as �N32P���. This method is thus
appropriate to study “small” areas in “large” systems. The
results of Fig. 10 for zigzag areas with lx=8 and lx=10 were
obtained by this method.

The direct enumeration algorithm searches and counts
physical dimer configurations one by one for a given set of

occupied sites. The enumeration is done separately for � and

�̄, and the required time for each area is almost proportional
to the number of dimer coverings, �E�

i � or �E
�̄

i �. Let N��� be

the number of sites in the “bulk” of �, then �E�
i � scales as

�aN���, where a is a constant. Similarly, �E
�̄

i ��aN��̄�. Since
we have �2P��� possible �i’s, the total computation time

adds up to �2P����aN���+aN��̄��. With the extension of the
area �, the number of possible �i increases, but counting

dimer configurations get faster because �̄ shrinks. Thus this
method is optimal for large areas in medium-size systems
�here up to N=64�, being complementary to the Pfaffian

method. One can reduce the time further by dividing � or �̄.
Let us consider an annulus like in Fig. 4 as �, for example.

Then �̄ can naturally be divided into inner �r�Rin� and
outer �r�Rout� parts, denoted by � and ��. Since � has two
disconnected boundaries, with � and with ��, one can label
��c� by two numbers, i and j, corresponding to the occupa-
tions around these boundaries. The dimer configurations on
� and �� can be counted separately for given i and j. The
eigenvalues to calculate is therefore expressed as �ij

= �E�
i � · �E�

ij � · �E��
j � / �E�. Let P �P�� be the “length” of the

boundary between � and � ����. The required computation

time becomes �2PaN���+2P+P�aN���+2P�aN����. By dividing
areas, in general, one can reduce the time of counting con-
figurations in this way, but the number of possible occupa-
tions at the boundaries increases. One needs to choose an
efficient division, depending on the system and area sizes.

*Present address: Condensed Matter Theory Laboratory, RIKEN,
Wako, Saitama 351-0198, Japan

1 M. Srednicki, Phys. Rev. Lett. 71, 666 �1993�.
2 C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B 424, 443

�1994�; G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys.
Rev. Lett. 90, 227902 �2003�; P. Calabrese and J. Cardy, J. Stat.
Mech.: Theory Exp. 2004, P06002; N. Laflorencie, E. S. So-
rensen, M.-S. Chang, and I. Affleck, Phys. Rev. Lett. 96, 100603
�2006�; S. Ryu and T. Takayanagi, ibid. 96, 181602 �2006�.

3 E. Fradkin and J. E. Moore, Phys. Rev. Lett. 97, 050404 �2006�.
4 X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 �1990�; X.-G.

Wen, Phys. Rev. B 44, 2664 �1991�.
5 X.-G. Wen, Quantum Field Theory of Many-Body Systems �Ox-

ford University Press, Oxford, 2004�.
6 L. B. Ioffe and M. V. Feigel’mann, Phys. Rev. B 66, 224503

�2002�.
7 S. Furukawa, G. Misguich, and M. Oshikawa, Phys. Rev. Lett.

96, 047211 �2006�; J. Phys.: Condens. Matter 19, 145212
�2007�.

8 S. Furukawa, Ph.D. thesis, Tokyo Institute of Technology, Tokyo,
2007.

9 J. Preskill, J. Mod. Opt. 47, 127 �2000�.
10 A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 �2006�.
11 M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 �2006�.
12 R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 �2001�.

13 D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376
�1988�.

14 A. Y. Kitaev, Ann. Phys. �N.Y.� 303, 2 �2003�.
15 A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Lett. A 337, 22

�2005�; Phys. Rev. A 71, 022315 �2005�.
16 G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89,

137202 �2002�.
17 M. Haque, O. Zozulya, and K. Schoutens, Phys. Rev. Lett. 98,

060401 �2007�.
18 A. Ioselevich, D. A. Ivanov, and M. V. Feigel’mann, Phys. Rev. B

66, 174405 �2002�.
19 P. Fendley, R. Moessner, and S. L. Sondhi, Phys. Rev. B 66,

214513 �2002�.
20 L. B. Ioffe, M. V. Feigel’man, A. Ioselevich, D. Ivanov, M.

Troyer, and G. Blatter, Nature �London� 415, 503 �2002�.
21 A. Ralko, M. Ferrero, F. Becca, D. Ivanov, and F. Mila, Phys.

Rev. B 71, 224109 �2005�; ibid. 74, 134301 �2006�.
22 F. J. Wegner, J. Math. Phys. 12, 2259 �1971�.
23 R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65,

024504 �2002�.
24 M. Nielsen and I. L. Chuang, Quantum Computation and Quan-

tum Information �Cambridge University Press, Cambridge,
2000�.

25 P. W. Kasteyleyn, Physica �Amsterdam� 27, 1209 �1961�; J.
Math. Phys. 4, 287 �1963�; see also Refs. 18 and 19.

TOPOLOGICAL ENTANGLEMENT ENTROPY IN THE… PHYSICAL REVIEW B 75, 214407 �2007�

214407-9



26 O. Derzhko and T. Krokhmalskii, Phys. Status Solidi B 208, 221
�1998�; Y. Maeda and M. Oshikawa, Phys. Rev. B 67, 224424
�2003�.

27 The zigzag area under consideration is not a disk �the width is too
small to contain one unit cell of the 	12�	12 crystal� but all
the d=12 VBC patterns can be distinguished by some appropri-

ate observable defined on this area. We thus expect the same
scaling as for disks.

28 Since the lattices we consider have periodic boundary conditions,
four Pfaffians �corresponding to periodic/antiperiodic boundary
conditions in both directions� must in fact be combined to get
the number of coverings in a given topological sector.

SHUNSUKE FURUKAWA AND GRÉGOIRE MISGUICH PHYSICAL REVIEW B 75, 214407 �2007�

214407-10


